Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9JCO_1)}(2) \setminus P_{f(1PLW_1)}(2)|=217\),
\(|P_{f(1PLW_1)}(2) \setminus P_{f(9JCO_1)}(2)|=2\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100101000111000011000100000100100011111100010001100101001010000000000111000010011111011101010110010100100111111110011101011111001100011010100000001000110010010011010011000011000100011100010100101011011100000001100100101111110000000100110010011000110010111110000111001111000100011011000010010101100101001001100011010010101000001010001000010011000001100101000011
Pair
\(Z_2\)
Length of longest common subsequence
9JCO_1,1PLW_1
219
3
9JCO_1,5ICE_1
156
3
1PLW_1,5ICE_1
209
2
Newick tree
[
1PLW_1:11.08,
[
9JCO_1:78,5ICE_1:78
]:37.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{366
}{\log_{20}
366}-\frac{5}{\log_{20}5})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9JCO_1
1PLW_1
155
78.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]