Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9JBM_1)}(2) \setminus P_{f(5XHW_1)}(2)|=209\),
\(|P_{f(5XHW_1)}(2) \setminus P_{f(9JBM_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111111101001111111000111100101111111101111111111011110011011011111110101101101101010101001100010001001011011101001000111100001001101101010010000011000011111111101100000001100000101100011000101111010011000101111110110111101000100011010111110101100010010010011001011010000010111000111101101100100011100111101001100111010011010011001010011010100010111110011001110010011011001011011001100001011001111100101001001111111111111111011101000100000011100011100111101110101110001111101010000110111110101001000101000011101111100100101100111000011100001101001011101100111011010100000111001000110100010110110010111000011000100111101110010011000110000100010001101111100011010000100100011000101111111001101000111001001000111101001101001100101100100111011000100001001010111111010101111001101010111010100100110111010111011100001110010011010110101000111100101111111011001100000100010100011010000100001111000010000001001100100000111011010111110001001001001100100011001011011110111110000110101101001010101111110111100001100100001110110100110111011101101101000101001000001101000101011000101111110110111000111110011000111101110111111111100101000111101110101111011110101111100110111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1400
}{\log_{20}
1400}-\frac{237}{\log_{20}237})=305.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9JBM_1
5XHW_1
385
229.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]