Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9IJM_1)}(2) \setminus P_{f(5HRA_1)}(2)|=108\),
\(|P_{f(5HRA_1)}(2) \setminus P_{f(9IJM_1)}(2)|=60\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000011111111110110110111011111101001011010011101011111000101001101001110010110101011011100010100001010010000111000001010110011000000001010100000001000100110010011000100111010011001110100011110101110101011100110110011111010100000110001000010100001101100100101100001010111000111100000001100010101101011000011110000000
Pair
\(Z_2\)
Length of longest common subsequence
9IJM_1,5HRA_1
168
4
9IJM_1,7DZZ_1
150
4
5HRA_1,7DZZ_1
150
4
Newick tree
[
5HRA_1:81.11,
[
9IJM_1:75,7DZZ_1:75
]:6.11
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{556
}{\log_{20}
556}-\frac{235}{\log_{20}235})=91.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
9IJM_1
5HRA_1
115
99.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]