Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9IJK_1)}(2) \setminus P_{f(7QGQ_1)}(2)|=83\),
\(|P_{f(7QGQ_1)}(2) \setminus P_{f(9IJK_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010001100011010011001010100010100011110101111011101000101110110011110011110000110010000101011001100101101011100111000111010110011011111110111011011100110010010001010010111011110000100111010100110000010011001010100110111011010100111110000111101110110111100101100010110100101100111011101
Pair
\(Z_2\)
Length of longest common subsequence
9IJK_1,7QGQ_1
154
4
9IJK_1,3KXY_1
152
3
7QGQ_1,3KXY_1
158
4
Newick tree
[
7QGQ_1:78.66,
[
9IJK_1:76,3KXY_1:76
]:2.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{661
}{\log_{20}
661}-\frac{288}{\log_{20}288})=103.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9IJK_1
7QGQ_1
128
114.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]