Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9IHU_1)}(2) \setminus P_{f(6DVE_1)}(2)|=95\),
\(|P_{f(6DVE_1)}(2) \setminus P_{f(9IHU_1)}(2)|=64\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111111101001100010010011110110110000011101001010101010111100100010101001110110001001000010011010010000110010010011000010000110100101111010010001001100100000000001100010110001010001000101010001000111111101001000010101101110100010001011000010111001101111010100011010000110111000111000100101010001001101110000100111100011010011001110100100010101111111010001000000111110010001000011001010011000010001100101101101011011100000001011101000100001111010011110100011110110011001100100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{836
}{\log_{20}
836}-\frac{359}{\log_{20}359})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9IHU_1
6DVE_1
159
139
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]