Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9GVM_1)}(2) \setminus P_{f(6YPT_1)}(2)|=122\),
\(|P_{f(6YPT_1)}(2) \setminus P_{f(9GVM_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000000000000111001010011000000100101000100000110000100011001100110110101101011101101101001101000100111000000010010011011111101011100100101001011000001001100110001000011111111110011001010110101100001100110110111111110110000011100010011110011011100110010110110000000110001110111001
Pair
\(Z_2\)
Length of longest common subsequence
9GVM_1,6YPT_1
177
4
9GVM_1,7HDI_1
163
4
6YPT_1,7HDI_1
150
4
Newick tree
[
9GVM_1:88.17,
[
7HDI_1:75,6YPT_1:75
]:13.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{439
}{\log_{20}
439}-\frac{160}{\log_{20}160})=82.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
9GVM_1
6YPT_1
107
82.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]