Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9FUT_1)}(2) \setminus P_{f(6BGP_1)}(2)|=83\),
\(|P_{f(6BGP_1)}(2) \setminus P_{f(9FUT_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000100100100111011110111111111111011000111011011100111000001111111111111110110001000010110101110100011101111110110000010110010000001100001111011001101111111110001010111111111101110110001001000100011010001001101000111111001000010010001010110110100100111011101111111011011011001011010111001111101100100101010011110001101100000000100110010101010010100110011110010101111001111100101000110110010010010111010010000110100011110001011000110011010000000001001101101101100100110011100111101100001111011100011111001001100000011011100100000011110010010010011110011110010000110001101010010110
Pair
\(Z_2\)
Length of longest common subsequence
9FUT_1,6BGP_1
148
4
9FUT_1,4ISO_1
169
4
6BGP_1,4ISO_1
185
4
Newick tree
[
4ISO_1:92.94,
[
9FUT_1:74,6BGP_1:74
]:18.94
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{964
}{\log_{20}
964}-\frac{382}{\log_{20}382})=154.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9FUT_1
6BGP_1
195
161
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]