Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9FPN_1)}(2) \setminus P_{f(3FKQ_1)}(2)|=110\),
\(|P_{f(3FKQ_1)}(2) \setminus P_{f(9FPN_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001000001100110010001100110000110100111001100000101100101110010111011010111101100011111110010100110010011010110011000001001100111100100000111011011110100000111110011110010110101111111000110110000110010100111111000110111001100110111101111100001111010110111010011100111010001000101111011011110001001110011110000100011110111011110000101011011000100110010100101100101100111001001101110010000101101101000111110001110110010100110111001101010110111100010110000100110011000111110101111110011101101001010110111011101011111111110110010000111111111001110100111110110110001111101110111100111111101011100110001001011011101010011001111100001111111
Pair
\(Z_2\)
Length of longest common subsequence
9FPN_1,3FKQ_1
165
4
9FPN_1,6GYO_1
167
4
3FKQ_1,6GYO_1
164
4
Newick tree
[
9FPN_1:83.33,
[
3FKQ_1:82,6GYO_1:82
]:1.33
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1009
}{\log_{20}
1009}-\frac{373}{\log_{20}373})=168.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9FPN_1
3FKQ_1
208
166
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]