Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9FLZ_1)}(2) \setminus P_{f(6LDD_1)}(2)|=50\),
\(|P_{f(6LDD_1)}(2) \setminus P_{f(9FLZ_1)}(2)|=128\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000001010100011001011110011011010011110111111010101011000010110101110101111110011111011111100100100111111001010000011110010000100100101111001110100110110010110111110111010011010000110111101111110111001011110111101000011110011101010110010111110000011101111011100110011111101101110111110111011111101101010111001010001011101010101001010010011101001010101110111
Pair
\(Z_2\)
Length of longest common subsequence
9FLZ_1,6LDD_1
178
5
9FLZ_1,5GMN_1
166
4
6LDD_1,5GMN_1
192
4
Newick tree
[
6LDD_1:95.54,
[
9FLZ_1:83,5GMN_1:83
]:12.54
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1036
}{\log_{20}
1036}-\frac{366}{\log_{20}366})=177.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9FLZ_1
6LDD_1
228
172
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]