Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9FIV_1)}(2) \setminus P_{f(1VZT_1)}(2)|=86\),
\(|P_{f(1VZT_1)}(2) \setminus P_{f(9FIV_1)}(2)|=74\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000001011100011000100110011100010011011100100000011111001100100000111000100011100100110001001001110010001010010101101101011001000010000000000001010101000110011001110010100000110011001001101101111101011011001000001010001011001110011000010011001101111001000110011010101010100100011000000011000011000010100000101110100001001101100001100110010000010100000000
Pair
\(Z_2\)
Length of longest common subsequence
9FIV_1,1VZT_1
160
4
9FIV_1,6DDC_1
156
4
1VZT_1,6DDC_1
174
4
Newick tree
[
1VZT_1:85.35,
[
9FIV_1:78,6DDC_1:78
]:7.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{644
}{\log_{20}
644}-\frac{289}{\log_{20}289})=98.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
9FIV_1
1VZT_1
125
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]