CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
9FFO_1 4DXR_1 9IIZ_1 Letter Amino acid
21 14 84 S Serine
39 15 52 T Threonine
27 10 70 R Arginine
14 3 27 N Asparagine
15 13 51 Q Glutamine
17 5 53 K Lycine
26 15 57 A Alanine
4 3 14 C Cysteine
17 11 43 I Isoleucine
13 1 25 M Methionine
17 8 32 Y Tyrosine
23 13 52 E Glutamic acid
39 16 93 L Leucine
23 10 30 F Phenylalanine
21 14 73 P Proline
32 13 90 V Valine
22 8 49 D Aspartic acid
23 18 58 G Glycine
11 9 26 H Histidine
7 3 8 W Tryptophan

9FFO_1|Chains A, D|Gamma-aminobutyric acid receptor subunit alpha-1|Homo sapiens (9606)
>4DXR_1|Chain A|SUN domain-containing protein 2|Homo sapiens (9606)
>9IIZ_1|Chain A|Piwi|Ephydatia fluviatilis (31330)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
9FFO , Knot 177 411 0.86 40 236 392
MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREPDYDIPTTENLYFQGTGQPSQDELKDNTTVFTRILDRLLDGYDNRLRPGLGERVTEVKTDIFVTSFGPVSDHDMEYTIDVFFRQSWKDERLKFKGPMTVLRLNNLMASKIWTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMHLEDFPMDAHACPLKFGSYAYTRAEVVYEWTREPARSVVVAEDGSRLNQYDLLGQTVDSGIVQSSTGEYVVMTTHFHLKRKIGYFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISARNSLPKVAYATAMDWFIAVCYAFVFSALIEFATVNYFTKSQPARAAKIDRLSRIAFPLLFGIFNLVYWATYLNREPQLKAPTPHQ
4DXR , Knot 98 202 0.85 40 153 198
GPGGSGGVTEEQVHHIVKQALQRYSEDRIGLADYALESGGASVISTRCSETYETKTALLSLFGIPLWYHSQSPRVILQPDVHPGNCWAFQGPQGFAVVRLSARIRPTAVTLEHVPKALSPNSTISSAPKDFAIFGFDEDLQQEGTLLGKFTYDQDGEPIQTFHFQAPTMATYQVVELRILTNWGHPEYTCIYRFRVHGEPAH
9IIZ , Knot 359 987 0.83 40 312 874
MSGRGGRGAALLKALEQPVRRPGQQPVQSGDQVAGPPSLTSATVSTVGVVQQHTVADVDRCPPLATPASGQPLTLHRPLGSPAVLPLGGRGGRGSRSVEPVEPRVASEPPSLISFGPSSPERAHTETEITPPTAVSVQQRPSSQTISRGVPAVGRGSMLRDPTSHVRLPQLYSSGGSPVVQTATATPTVSPPALSPSPPLLTQSPPSQSPLPIKAIKDLSLNVESSMVSQRGSSGQPVPVSANYLPLKGNMDGVFKYAVGFNPPVEDIRSRSQLLNEHKELIGLTRVFDGSTLYVPKRICEQRLDLMSTRQTDGASIKVTISLVDSVKNRDVVQLMNVIFKRILRSLKLQRIGRDYYDANSPLEVPQHKMQLWPGYVTAINRHEGGLMLVLDVSHRVMKTDTALDFLYELYHFNQDKFREEAFKQLVGSVVLTRYNNRTYEIDDIAWDKNPRCAFQDHAGSQITFVDYYKRAYDLDITDLEQPLLIHRPKKKQRGKQDEGRKEVEEMVCLVPELCAMTGLTDAARSDFKVMKDLAVHTRVPPEKRAESFRKFIQRLNTTKEASELLHSWGLVLDSRMLDMQGRRLPPEKILFKHSSIVANMEADWSRECLKEHVISAVSLLDWAVLFVRKDQGKATDFVNMLSKVCPPIGMEVHEPKMVEVVNDRTESYLRALRELIAPRLQMVVIVFPTSRDDRYSAVKKLCCIESPIPSQVLIARTITQQQKLRSVAQKVALQMNAKLGGELWAVEIPLKSCMVVGIDVYHDKSYGNKSIAGFVASTNPSFTRWYSRTAMQEQSQELIHELKLCMQAALKKYNEMNQSLPERIIVFRDGVGEGREEYVSEFEVPQFNSCFSIFGENYCPKLAVVVVQKRITTRIFGRSGHSYDNPPPGVIVDHTITKSYDFYLVSQHVRQGTVSPTYYRVIYDKSGLKPDHLQRLTYKLTHMYYNWPGTIRTPAPCNYAHKLAFLVGKSLHRDPAHELSDRLFFL

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(9FFO_1)}(2) \setminus P_{f(4DXR_1)}(2)|=124\), \(|P_{f(4DXR_1)}(2) \setminus P_{f(9FFO_1)}(2)|=41\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000110110110111101001010100010100010001100001010101010000100000110011001101000010111100100100011100111100001000101110001000010101110110100111001101001100100011001011001101000101100101010100110100111010101101100100010110010001100111100100100001110010011100001001110001010001101110001101101110010111000011100111100110100101010001101101011011111001111011101101001000011011010010011111111110110110010001010110100
Pair \(Z_2\) Length of longest common subsequence
9FFO_1,4DXR_1 165 4
9FFO_1,9IIZ_1 142 4
4DXR_1,9IIZ_1 191 4

Newick tree

 
[
	4DXR_1:94.53,
	[
		9FFO_1:71,9IIZ_1:71
	]:23.53
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{613 }{\log_{20} 613}-\frac{202}{\log_{20}202})=117.\)
Status Protein1 Protein2 d d1/2
Query variables 9FFO_1 4DXR_1 147 108
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]