Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9FFI_1)}(2) \setminus P_{f(5FJG_1)}(2)|=95\),
\(|P_{f(5FJG_1)}(2) \setminus P_{f(9FFI_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000000011101011001100100000001100101110011010101010101001010101010100100010101001111110101101011011010011000110110000001101101001101001111010000010010110010101001110111100001110100001010011101010111010011001101000001001101111001000101000000001100000001000011100100
Pair
\(Z_2\)
Length of longest common subsequence
9FFI_1,5FJG_1
189
3
9FFI_1,6HOS_1
159
7
5FJG_1,6HOS_1
152
4
Newick tree
[
9FFI_1:90.78,
[
6HOS_1:76,5FJG_1:76
]:14.78
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{542
}{\log_{20}
542}-\frac{267}{\log_{20}267})=78.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
9FFI_1
5FJG_1
103
100
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]