Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9EPH_1)}(2) \setminus P_{f(5XEK_1)}(2)|=172\),
\(|P_{f(5XEK_1)}(2) \setminus P_{f(9EPH_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0111101101111011001111011000101111010000011111110010111001011011101101111011100010111101001010111110110011110101011101101110010010011010101010010111011001101111011101001111000000100001001111001000111000001001111100010111011001110010101001001010000011100010111110100000111011010101011010001110110010010010011101011111110000100111110001100110011001101111111110010011100111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{415
}{\log_{20}
415}-\frac{42}{\log_{20}42})=117.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9EPH_1
5XEK_1
143
80
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]