Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9ENS_1)}(2) \setminus P_{f(3EFO_1)}(2)|=70\),
\(|P_{f(3EFO_1)}(2) \setminus P_{f(9ENS_1)}(2)|=19\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111110111111011101000101100000110000100110100100111101110101000011110110100101000110110001000110100111010110101001110011100011010101100111010100010011010010110000101010110001110001100111100111000101111101010100101101001000000100011100000101100001011000000011100010010100010000111010100000111100101011010000011111001000101101000110010000100011000011000010000001000110100010000001000000011010101001100011101110010011001010110110011101100100100111010100111100110010000100100010101001010000011000010110011000101111101001100100001011011001100100100001001101100101000011001101010011001010000100001100110100000001000011110001001000000101000111111110101101101010100010110001111011010000101100110010100100001000111111000111011001101001000001001100010011010010100110010010011000000001001010001100001100111001100001110110101000010101100011111001001101010010000011011001100101110011110101110000110111100011001101100010110010110101100000100110001111100101101000010101010101111100010101000101011110110000110110001010111010101001010101011110100000110001111100001101011010010011110000011110001110101001000001101100001000110110100000101010101010000111100010001100100000010101111010000100000000110011011001000110101011100000011011100001000101111101011000100010110011101001100000100010101010100100010100101010100010100111100110001001001001100000111101110010101011001111100011101001001010101001001100010101010001001011100111010100101001110000110010001110011000000011000010010100011011101011100010101000000101100001011000001100010111100010111100001011101001110000100010000111010011001111000010101110100111010000000101101010000000111100011001001110011100000100101100100000100000000011000001010001001100001000001000010000001010101110010100110000010010010000111010001001101010001100000101111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2535
}{\log_{20}
2535}-\frac{765}{\log_{20}765})=424.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9ENS_1
3EFO_1
544
389.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]