Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9ELJ_1)}(2) \setminus P_{f(6PBX_1)}(2)|=49\),
\(|P_{f(6PBX_1)}(2) \setminus P_{f(9ELJ_1)}(2)|=43\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111111111000010110000000010011001001100011010001111110010110110100100010011111001101100000011011111001000000111100100111010010100011101000000011000011000100001001001111010100101001001110010101010000011110011011011011101111101001001111000010110000110111100011010100111000001010011001101100000010010100110000010101000110110100101100110100110101100001000110001100111111100011010010010100101001110100100111100101100000110010101111000010000010000100010000101100010001001100100101100011100011010011100100111101011011101011000001100001010101101011100000011110011001100001100100101101010011110110110000001111001100001011101001010101000100110001101111001000000011111110100000000010100110001110010111000110000011110010101000111101000010001010100000001110010100010011011110000000011101001000111001111010011101001000011001110010110111100010011011100110100101101111110001110000111110100110111111101111101100101111000110000011100100111010001100101110100110001011001100100011110011001100101101010100110101001000100011011010101011100100011100001010101001101100110111110100111000010011110001010110011110010011100001001011000001101000111111000100110101001000100010000010101101011010110100010010011001000110100110000
Pair
\(Z_2\)
Length of longest common subsequence
9ELJ_1,6PBX_1
92
4
9ELJ_1,8DXG_1
134
5
6PBX_1,8DXG_1
138
4
Newick tree
[
8DXG_1:73.90,
[
9ELJ_1:46,6PBX_1:46
]:27.90
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2045
}{\log_{20}
2045}-\frac{846}{\log_{20}846})=290.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9ELJ_1
6PBX_1
376
318.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]