Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9EAU_1)}(2) \setminus P_{f(7KYJ_1)}(2)|=157\),
\(|P_{f(7KYJ_1)}(2) \setminus P_{f(9EAU_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000010110111110010100011011010101100010101010010000001110111000100000000010000010011011111110010000000100101000010000010100100101010101001010000011101001101110011111100110110001110000100001110101011011010000100001010011010010111101100001011001100010010001111001000110110011101110101100110011011110010001110000001111101000000110011000001101001010100110101010010101110101001000001100110001110110000011101010110110011011111111111111110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{632
}{\log_{20}
632}-\frac{194}{\log_{20}194})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9EAU_1
7KYJ_1
161
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]