Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9DHS_1)}(2) \setminus P_{f(3CPK_1)}(2)|=161\),
\(|P_{f(3CPK_1)}(2) \setminus P_{f(9DHS_1)}(2)|=33\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000111001100101110000011010000010010111011000110001011101001100100011011110110101011111101011000110100111011101110010000111101101110011101111011101111110010100100001001000000000001111001110111110010010100101011111111101111000010111110100110110010010000011010100100001100001111001100100101011100010111010000100101100010001000010001011101000101110101001101101111010001110010001100010011000100000011010011111011111111111111101000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{580
}{\log_{20}
580}-\frac{150}{\log_{20}150})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9DHS_1
3CPK_1
161
106.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]