Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9DGK_1)}(2) \setminus P_{f(8PCU_1)}(2)|=118\),
\(|P_{f(8PCU_1)}(2) \setminus P_{f(9DGK_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001001111100100010001100100001010001100100110110001101110101011000001110100011001100000010100100110001101011101101111000000000100100101111101101011010011001101010100011001000000110011110001110110000000110001001011011100000110101011011000000101100010011010100100011000101001110110001000001100001001110010110010010101011101000110110001001110000000111100011100100011001000110111110110010011
Pair
\(Z_2\)
Length of longest common subsequence
9DGK_1,8PCU_1
173
3
9DGK_1,7BSR_1
185
4
8PCU_1,7BSR_1
156
4
Newick tree
[
9DGK_1:93.08,
[
8PCU_1:78,7BSR_1:78
]:15.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{653
}{\log_{20}
653}-\frac{263}{\log_{20}263})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9DGK_1
8PCU_1
139
116.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]