9DAZ_1|Chains A, C|Aminopeptidase N,Immunoglobulin gamma-1 heavy chain|Felis catus (9685)
>2MHM_1|Chain A|Cytochrome c iso-1|Saccharomyces cerevisiae (559292)
>1AHW_1|Chains A, D|IMMUNOGLOBULIN FAB 5G9 (LIGHT CHAIN)|Mus musculus (10090)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9DAZ_1)}(2) \setminus P_{f(2MHM_1)}(2)|=256\),
\(|P_{f(2MHM_1)}(2) \setminus P_{f(9DAZ_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111011111110110110111110110010000011010011001110000101010101000110110100110100000001111000010000001011110111110101111000110100011101001111100001000101011001111000001001100111000101001000110100111010101011010011110011101101111001010100100011100011101100100100011011110111010110010100110101111011000000101100000111101011110011110000011100000000100001101110011001110110101100111001110010011101101010100111100100111101110001100110010011010011001000011011011001100011011110010000010010101100100110001010110010111001110111111010000101000011101001100100100111111001001010100111110010001100010011110101010011000000100100010001011111001011001101101001110111000111100000111011100100101110000101110001000101110010010001000100110000010110010001110000111011101000100011010100010001110110001011100110101100100101111000011110011000101011000010001001000111001110110001001100010101010011011000100010100100100001001110100110011000010101100000111011000011011101010101010100000000011011101111101111110100011100010100111010000101010101011010010001000000000011011011000110100000010001111110001001010100101001110000100001010011011010011101000101000000011110001011100010100001001011000110011000000001010110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1292
}{\log_{20}
1292}-\frac{108}{\log_{20}108})=320.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9DAZ_1
2MHM_1
405
219.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]