Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CQR_1)}(2) \setminus P_{f(6MMU_1)}(2)|=10\),
\(|P_{f(6MMU_1)}(2) \setminus P_{f(9CQR_1)}(2)|=235\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011000010111101110110011011001110110000011010100101010101001101100111010011011011001010010101101011000111011101110101110101001110100110000
Pair
\(Z_2\)
Length of longest common subsequence
9CQR_1,6MMU_1
245
4
9CQR_1,2JGM_1
217
4
6MMU_1,2JGM_1
140
4
Newick tree
[
9CQR_1:12.35,
[
2JGM_1:70,6MMU_1:70
]:57.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{978
}{\log_{20}
978}-\frac{140}{\log_{20}140})=231.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CQR_1
6MMU_1
300
172.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]