Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9COV_1)}(2) \setminus P_{f(6GWJ_1)}(2)|=177\),
\(|P_{f(6GWJ_1)}(2) \setminus P_{f(9COV_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101010000111001111110111111011000011011010000001011110010011111001011001110000011000011111111001101100001001001101010010100111111001011100100010010110100111100101100001110100100100111000001101011011110101111111110110101110010011000100100001000000010110111000000000000110010111001111111000000110111001100101000100010111100111000011010010111000101111110100100001010111110111111100110001001001001110010000000101010011101100011101111010111101100101010000011101011111010011110100001010110000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{630
}{\log_{20}
630}-\frac{143}{\log_{20}143})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9COV_1
6GWJ_1
183
114.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]