Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CNU_1)}(2) \setminus P_{f(6UMM_1)}(2)|=89\),
\(|P_{f(6UMM_1)}(2) \setminus P_{f(9CNU_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001110010111010010111011000011101111101100100100100110011000111011001100011010100111111111010010100111000010001011001001111101000110111000101001001101001100110001001000101000011100110001110010100011101111010100110100111111001011100000000
Pair
\(Z_2\)
Length of longest common subsequence
9CNU_1,6UMM_1
156
3
9CNU_1,2IYT_1
158
6
6UMM_1,2IYT_1
122
5
Newick tree
[
9CNU_1:83.52,
[
6UMM_1:61,2IYT_1:61
]:22.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{525
}{\log_{20}
525}-\frac{240}{\log_{20}240})=81.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CNU_1
6UMM_1
99
94.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]