Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CHM_1)}(2) \setminus P_{f(6ACN_1)}(2)|=20\),
\(|P_{f(6ACN_1)}(2) \setminus P_{f(9CHM_1)}(2)|=185\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100100111110011000001111000001110010010101001010110001011010010000111010111001001111000001001001101101101001100101101010000110111011000010011000111111110010111100101001101110011111010
Pair
\(Z_2\)
Length of longest common subsequence
9CHM_1,6ACN_1
205
4
9CHM_1,7SSP_1
177
4
6ACN_1,7SSP_1
166
4
Newick tree
[
9CHM_1:99.64,
[
7SSP_1:83,6ACN_1:83
]:16.64
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{938
}{\log_{20}
938}-\frac{184}{\log_{20}184})=207.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CHM_1
6ACN_1
264
161.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]