Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CAX_1)}(2) \setminus P_{f(1WTU_1)}(2)|=197\),
\(|P_{f(1WTU_1)}(2) \setminus P_{f(9CAX_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000000011101110110011101000100100010110010011010011001011110100101101000010010100100110111101001101100101001011100100000101000100011110111111001101001011011010101100001000010110100101110101011111111101110111011100001110011110111111001011110111110111110111110111101001010010101101011110111101011111011100001101111111111101101111100100111000001011011001110101000100111000100010110110110110101011011101100010110111100001110111111011010100111001111101111001100111111111111111010101010001111101011111111101001111111110101100000111111110101100111111111100010000111110101011101011110000000101001100000101100010011001010101111101001000000000011
Pair
\(Z_2\)
Length of longest common subsequence
9CAX_1,1WTU_1
210
3
9CAX_1,5NMN_1
238
4
1WTU_1,5NMN_1
90
3
Newick tree
[
9CAX_1:12.94,
[
1WTU_1:45,5NMN_1:45
]:81.94
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{739
}{\log_{20}
739}-\frac{99}{\log_{20}99})=184.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CAX_1
1WTU_1
228
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]