Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CAS_1)}(2) \setminus P_{f(2WGJ_1)}(2)|=153\),
\(|P_{f(2WGJ_1)}(2) \setminus P_{f(9CAS_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111111101100001000101000011100011000011001001100011011000111100010011011101001111100110111000001101111100100000011110000011101001010001111110000001100110011000100100010101100110100100111000011101001001101101110110110111011111010010011011110100110011101110101001110000010100110000011101000100101001100000101110001101101001011101101001101011000010001100011000001001000110100100101001010011101001001111001111000001100111011110000000000100001001100001010000100010011100001111000011010111001111001001111010110111010110100011000010101011010111010000101100110010010001001000011010100111101101100000011110001000011111010010101010001001100011011110010000000111111101000010010000000111001011100011000001111001010100011110110001000101010000010111001010001001101111000000001110100100010100111101001110110100001100111001011011110001001101010011010010110111111000111100111101010111011111110111110110010111100011000000110010011001000100000111010011000101100110010001111001100110010010101010011010100100010001101101010101110010001110000101010100110110111011111010011000001001111000101011001111101001110000110101100000110100011111100010011010100100010001000001010110101101011010001001001100100011010011000010101101100101010001011110011100101110111000000000110010100111011110110110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1577
}{\log_{20}
1577}-\frac{306}{\log_{20}306})=327.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CAS_1
2WGJ_1
412
253.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]