Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CAM_1)}(2) \setminus P_{f(2CEU_1)}(2)|=302\),
\(|P_{f(2CEU_1)}(2) \setminus P_{f(9CAM_1)}(2)|=3\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101101000111111111111100111101100000000100011100010101000110100100001100001100101000010101010100011011010001010000100111100001000100100111011110011010000110100011101010110000001000101011001111000001010100111000101101000110100111010101011010010110011101100111001010100100010100011111100100100010011110111010111110100110101111011110000101110000111101011110011110000001110110000000001101110011001110110101100111001110010011100101010100111100100111101110001100110010011010011011000011011011001100011001110010011000010101100100110000101100100110010101111110100001010000111010001001001001111110010010000001110101000110001001111010101000100000010010001000001111100101100110110100111011100011110000011101110010010111000010111000100010111101000000100110011000001011001000111000011011100110010001101010001000111011000101110010010110010010111100001111000100010101100001000110100011101111011000100110001110101001101100010000010010010000000111010011001100001010110000011101100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{988
}{\log_{20}
988}-\frac{21}{\log_{20}21})=277.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CAM_1
2CEU_1
355
181
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]