Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BOZ_1)}(2) \setminus P_{f(6QCN_1)}(2)|=117\),
\(|P_{f(6QCN_1)}(2) \setminus P_{f(9BOZ_1)}(2)|=60\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000111010011001110001001010101011110100011100110110001000101110001001011000010001010101100110101111000110100100000110110010110010101010011010011101000110100110010011101000111011011011011100000100000000010100101010100011001101011011111101101110101111011111001101000001001011010010110111110111110111001110110000001101000000000110100010000101010111101010011010110011011100100100111001001001001011111111011011100110000100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{726
}{\log_{20}
726}-\frac{304}{\log_{20}304})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BOZ_1
6QCN_1
148
125.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]