Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BNP_1)}(2) \setminus P_{f(2YRL_1)}(2)|=175\),
\(|P_{f(2YRL_1)}(2) \setminus P_{f(9BNP_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011101001111100100011010010100000001110010110010100101001000101100011001000110110001010101011010100001000100101000010100010000001001100101101000010000000000011000001000101010101111000111111110000001010110101001000011011100011101011000111000010001001110100110100001000000010111101101010111010010001001010001101100100011000110110001101010000100110110000011100011000010100001000010110010011011001100101111011100100101111000110000000010111101000100010000110101111110000001
Pair
\(Z_2\)
Length of longest common subsequence
9BNP_1,2YRL_1
196
4
9BNP_1,4MTY_1
176
4
2YRL_1,4MTY_1
158
3
Newick tree
[
9BNP_1:97.39,
[
4MTY_1:79,2YRL_1:79
]:18.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{570
}{\log_{20}
570}-\frac{102}{\log_{20}102})=138.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BNP_1
2YRL_1
173
104
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]