Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BCN_1)}(2) \setminus P_{f(7AAP_1)}(2)|=48\),
\(|P_{f(7AAP_1)}(2) \setminus P_{f(9BCN_1)}(2)|=57\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000000111101011111111000011011011111011110101010111110100111000011110000111111101010001111111101011111101010101111011111111110000110001110010110111110001110001111010011000001111011110100010101001011000100000110011001011010001011001111110111010001110101110010110111100110010100101001101101100001001001011001001100010101001110011101001111010110001101101001001000110001011010101000100000101101010011101110001000011110100101111011101100110000110000010010111111010111111101110001010001100110101001010010001001100101010100010110001010111001000101111001000010100011101001001000010011110001101011000010101001100001010111000100011011111001110001010000011010111010001100100101001001010011011011011011101001101001111100111001110101101010011001001001110101110001001111100011001000111001010100100000001100110010001001001100000101000001011100111001100100100101011001010100111101101000110110110010001011100101001001101011101111001010100110111111011001010001000101011100111011111101100011100100100100010110101000001110011110101010101010101000111100100001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2007
}{\log_{20}
2007}-\frac{967}{\log_{20}967})=251.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BCN_1
7AAP_1
329
315
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]