Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BAQ_1)}(2) \setminus P_{f(9GOA_1)}(2)|=61\),
\(|P_{f(9GOA_1)}(2) \setminus P_{f(9BAQ_1)}(2)|=20\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100100001111101110011100001011101100111001001000111110000101111100101010010101010100010000110110111110000010110110000100011100000101011100110100010010000011111000100111001101101110000001010100101010010010010110111001100000101110010000010110110111100110100101011100000100010011001110000000111111011001100000110000010110100011011001010001100101001000100011101101100101111100111001100111101100100011111110010001110110101000110111101101110010000010110010100001001000001000010001101100111011010110001101100011100001111001010101010101010001101101001000110010110110010000000000101000000011111001001000001011000010111100100010011000100011100000000100101010011110110111010000101110010000000110100001000000110110110011001110101000100100110010010000111010011000010000111001100001101010011100110010100011010001101011110000001001110011101001101110110101011010011101101100111101011001100110001100101000011110100110111010100011011010111110101110110000011001000011101101101001001110010111001100000110011011111100101111011101110000011101111111110111100000010000111100100010001110110110110101011011010101010110001101101010100101100101101101100101110000001110010000001011100101001110100000100101111101000010010010010101000111100000101110010001111111010011110100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2419
}{\log_{20}
2419}-\frac{1175}{\log_{20}1175})=293.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BAQ_1
9GOA_1
386
368.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]