Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ZND_1)}(2) \setminus P_{f(5XMZ_1)}(2)|=150\),
\(|P_{f(5XMZ_1)}(2) \setminus P_{f(8ZND_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110111001001100101000110110011011010111010010101101101000110110011101011001001011101101011110110111011111010010000000110101011001111100111101000101111110000011000111111101011011101101010101111010011011110101001110101011000101100011101111000011100101101001101000010100111100100001101010111111100110000100101011101101110101001100011101101100111101001011001010010000100010001001110100000000101001101111001001100011100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{571
}{\log_{20}
571}-\frac{155}{\log_{20}155})=120.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ZND_1
5XMZ_1
155
104.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]