Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ZJF_1)}(2) \setminus P_{f(4UOH_1)}(2)|=191\),
\(|P_{f(4UOH_1)}(2) \setminus P_{f(8ZJF_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111111111111001000101011001010010010101110001110000011001001100010101010101000100001110101100100101000110001100110101100111001010101101001010110101011010011010001000100100110111101001000101111011000111110011001001010010000011010011010101011000110001010100101110111011100001110010011110000010011010111111100100010001100000010010110110110110101111100111110001001110011101000000110111010001000101000011111010000000110000101000100001010001011101010001101011010111100011101001000000000101100001010100110001110110100001101001010010011010111001010000100000100010100000100000011101111000011000010001010000101000101011100101000000000101001110000110001000000010011100111100000101000101111111001100000100011111100010101110101000110000111110111111111111110010101000000001000000101000001100011000101010010010110101100110100101001010001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{977
}{\log_{20}
977}-\frac{151}{\log_{20}151})=227.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ZJF_1
4UOH_1
287
170
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]