Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ZFM_1)}(2) \setminus P_{f(1PGG_1)}(2)|=72\),
\(|P_{f(1PGG_1)}(2) \setminus P_{f(8ZFM_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010011111001111100010111000110011000001111010010110101010100110100100011101111001100111101001000001110000111100010001010001000100101001100011110110101001001101001110000001011010100011001100100111111011000110111001000000000011000110001110001100110111101110110111110000100100001011100110101111110001100000111111100111011011011100111100110110111000101000111111101111100101001000000001000110111110100010010001011001001101001100101111010010110100001001010010011011110100110110010100101110010000010100010000001111100010001011010011000010011010010101000001101010111111001111110101110111101011011000001111010011101000110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1196
}{\log_{20}
1196}-\frac{576}{\log_{20}576})=159.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ZFM_1
1PGG_1
206
199.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]