Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ZBV_1)}(2) \setminus P_{f(4AUW_1)}(2)|=250\),
\(|P_{f(4AUW_1)}(2) \setminus P_{f(8ZBV_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000010000101110110001001101101111111110101111001111010000010111000001101001111101011111110100011010000110101000001010001101001110000001001100101000000011101010100110000010110110110010001011000000110110001010101001101000101001100101001000110101100100101010011100100011010001011101101100001101001001111101100101101110000101001100010011110100100001100001100111011011010000000100010000101111010010011100001101110101110111011110010001000100110100011000011101100101010001000011011100000011100111110010101111111110001110011010001100000111001101010111000010010010101001110110001010010000101100110001011011000001010100010010100110010100100010010000001001111111001010001011011000111001011011010001001101010111110100100100110011011101001000011001011011111010111110111101110000111011111100110101011010111110101001011011101100001010000010111010011010000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{944
}{\log_{20}
944}-\frac{96}{\log_{20}96})=237.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ZBV_1
4AUW_1
303
166.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]