Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8YIG_1)}(2) \setminus P_{f(1BGJ_1)}(2)|=162\),
\(|P_{f(1BGJ_1)}(2) \setminus P_{f(8YIG_1)}(2)|=11\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00101010100101100100001110110101001111111001000100110011001111000101100011110000010111011001100100111000100001111010111011000011100101111000001010011001101101100001101111011110100100110010010100010110100000100111010010011101100001101001101010010101011011101100000100100100001100110011001000110110111101110101000010010101100011010001001110010010000000010000111010010100111010101100010010011110000000010111100100010100110101111000101010011000100011001001010111000110011010100011110110010101000101000010111101000000010010000010001100100011000010100101010001011000011111100111110000001100111111111011000000011110101001101011100110001000110010010101110100110011010001110010001101101010010001001010100100000000000011010011101101001001110101000000001010100100011110001101101111000101010110111011100000101100101111001101101111100000000011111111110000101011001001100010010000001110100101011001010000111100100010110010000000000010100010011011000011101001000101010001010100010101111101010101110111011111011001011101011000100010101111010001101101000100010111011100010010011011100010101101010010011000101101000110001101000001011010010010100000110001011010101000110001011111100101010101111100010000101100101111101001101101001011100110101010110000010010100100011000011101101011001001010100011111101100111110001011011110010011110000110100001000011010010100101110100010101111011001110010111111100011001101100101001010011001101011100101010000101111000010001100100000110110010010001010000101110111011101011000001011110010011100001101010001011111001010011001101000010010001011100101010110100010100110100010001001111010101000101101110110111111010000100010111011010100100011100100110000101110011101001110001001000101011100000101011001100100001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{2115
}{\log_{20}
2115}-\frac{394}{\log_{20}394})=428.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8YIG_1
1BGJ_1
554
337.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]