Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8YHN_1)}(2) \setminus P_{f(6NOQ_1)}(2)|=48\),
\(|P_{f(6NOQ_1)}(2) \setminus P_{f(8YHN_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111110111011011111010110101010101000010001111001010111000011010000000001100111100011001000111010110000100110011010010010101101110110011111110111011011111111011111000011101101010110010110011101101010100010011100000110011011111000100100001100011110110010101010110111001001111010001111110011000011011001110010101001101101111110100010110010010100000101010111000111111010111010111001101111101000101110110110111000000
Pair
\(Z_2\)
Length of longest common subsequence
8YHN_1,6NOQ_1
136
6
8YHN_1,4HXQ_1
148
4
6NOQ_1,4HXQ_1
140
4
Newick tree
[
4HXQ_1:73.32,
[
8YHN_1:68,6NOQ_1:68
]:5.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{879
}{\log_{20}
879}-\frac{411}{\log_{20}411})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8YHN_1
6NOQ_1
157
144
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]