Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XTY_1)}(2) \setminus P_{f(6IWQ_1)}(2)|=68\),
\(|P_{f(6IWQ_1)}(2) \setminus P_{f(8XTY_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010111010111001001111110001001101111111010101010010101010101001010101100010111111011001001100100010010000110011101010000101000100000101010100110010101101000101110010001000010101000001101010100010010101100000001110111111000010000110001000000111101101111010000011111101111100110111111110011010111011000101101011110110101001000101011111101101001000001011111100111011101101111001000111111111111001111110001011110010111011100011111100010010000111111111011011111111110011100111111111011011111111011011101010111101100111010111111110000111111010110110001110010111111111110111101010111001010110111111111100011110001111110101101111110011110111110100101010101110100011011111111011001110010111111011011111110011110101010110011111011101010011011110000101000111000011111001100000000101010100001000101010010100011000010111001101001010111001010011101110110110010100
Pair
\(Z_2\)
Length of longest common subsequence
8XTY_1,6IWQ_1
137
4
8XTY_1,8IWR_1
131
4
6IWQ_1,8IWR_1
120
5
Newick tree
[
8XTY_1:69.19,
[
8IWR_1:60,6IWQ_1:60
]:9.19
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1448
}{\log_{20}
1448}-\frac{597}{\log_{20}597})=215.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XTY_1
6IWQ_1
269
232
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]