Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XQB_1)}(2) \setminus P_{f(1PRN_1)}(2)|=36\),
\(|P_{f(1PRN_1)}(2) \setminus P_{f(8XQB_1)}(2)|=97\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110100110111101000101011001010010001111011100100100110110101001011100001001001001011000111001010011000111101111110000
Pair
\(Z_2\)
Length of longest common subsequence
8XQB_1,1PRN_1
133
3
8XQB_1,1GYB_1
132
2
1PRN_1,1GYB_1
147
3
Newick tree
[
1PRN_1:71.39,
[
8XQB_1:66,1GYB_1:66
]:5.39
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{406
}{\log_{20}
406}-\frac{117}{\log_{20}117})=87.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XQB_1
1PRN_1
104
73
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]