Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XLQ_1)}(2) \setminus P_{f(3PVY_1)}(2)|=85\),
\(|P_{f(3PVY_1)}(2) \setminus P_{f(8XLQ_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111111010111011101100011110111010110110101111011010010011101100010000110110010110111000011011110000111011100110101001101001111010101100001110111110010011011001000001000111001110000110110111101100100000000101110111101110010000001101111110110111010111110011011001001001100110101110001011100010100110110011111000
Pair
\(Z_2\)
Length of longest common subsequence
8XLQ_1,3PVY_1
181
3
8XLQ_1,6KFK_1
168
4
3PVY_1,6KFK_1
195
3
Newick tree
[
3PVY_1:97.18,
[
8XLQ_1:84,6KFK_1:84
]:13.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{622
}{\log_{20}
622}-\frac{311}{\log_{20}311})=86.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XLQ_1
3PVY_1
116
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]