Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XLA_1)}(2) \setminus P_{f(6ZJS_1)}(2)|=36\),
\(|P_{f(6ZJS_1)}(2) \setminus P_{f(8XLA_1)}(2)|=120\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001111010000110110110111001001111001110101100011100101010011101111010100010010011011111111010100001010110001110011110111101100101010110001001100100011100100010111101010010111001001101101101011010111100011011011001001101011000101000100110011010110100111100001111001011111001011100010110111011110110000000010001011001101011101101101100100001011110100001101100101001111101
Pair
\(Z_2\)
Length of longest common subsequence
8XLA_1,6ZJS_1
156
4
8XLA_1,8TBB_1
186
4
6ZJS_1,8TBB_1
238
4
Newick tree
[
8TBB_1:11.79,
[
8XLA_1:78,6ZJS_1:78
]:36.79
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1397
}{\log_{20}
1397}-\frac{387}{\log_{20}387})=260.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XLA_1
6ZJS_1
327
224
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]