Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XFW_1)}(2) \setminus P_{f(1GAK_1)}(2)|=155\),
\(|P_{f(1GAK_1)}(2) \setminus P_{f(8XFW_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001011111001110101010111011000001011000101011000110111001101000010111101001000011110101100010110111001011101111000110011111101011001110000010010001111110000100101001101111011110011101101001100111001001001011110010110111111100001101111000111111001000000111011000101011010110011100001001101110010011111000010000000100111001100100011110011000011000111111001110001011101111111101100010101100011111100111100011010011001001110011010100100010011011100000100110010
Pair
\(Z_2\)
Length of longest common subsequence
8XFW_1,1GAK_1
189
3
8XFW_1,1QHN_1
185
4
1GAK_1,1QHN_1
160
3
Newick tree
[
8XFW_1:97.59,
[
1QHN_1:80,1GAK_1:80
]:17.59
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{600
}{\log_{20}
600}-\frac{141}{\log_{20}141})=133.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XFW_1
1GAK_1
166
108.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]