Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XDH_1)}(2) \setminus P_{f(4BXK_1)}(2)|=55\),
\(|P_{f(4BXK_1)}(2) \setminus P_{f(8XDH_1)}(2)|=106\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110110010000000110010010010101101101101011111011010111101101110111011110011011111111110001111011110111010111100001111111010011111111111001101011111101110110111001110100010111101110111010111010000011011101000100101001001011001111110101000110111111111100110110101101111101111111100101111100011101111111011010001111101110101101110110011111001110101101111000001100111101101000100010100000000110100000010000101010000101001010000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1055
}{\log_{20}
1055}-\frac{426}{\log_{20}426})=165.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XDH_1
4BXK_1
215
178
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]