Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XCI_1)}(2) \setminus P_{f(6VVS_1)}(2)|=157\),
\(|P_{f(6VVS_1)}(2) \setminus P_{f(8XCI_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101000100100100010000110110110011101110110011100011100010001011011101100000110110001000111001000011000100101001010111011100000100010010111010001111000010101000000110111101110110101001010000001000011000001101000010011111010000110001000001010110110000100000011101010110000111011011001001110011110100111011100000011011110010100010100000110110010011001111010010110001000010000001111001111000101100000110101101001100100110000111001001001011100001010011111100011000010101110110011101101000001110011011110000001010001011001011101101010110101001001101010011011100011010110100011001010000010011011001100011100110101000101011011110010101010010001110100101101101110101010010001100100000000100111100010101101110010110101011111110010101101010101011100101010111000011010010000001101101111010101100001010010011001110111010001010101101010000110011001010000100100100010010001011111010000010001111110100000101001111100111101101000111110100111001110010110100110111101010101010010101010100101001011000010101010011101101101111000000101101000101000011000111111010100001010000010010111011110011100110110011011110101110101000000101110011001011110001111011
Pair
\(Z_2\)
Length of longest common subsequence
8XCI_1,6VVS_1
173
4
8XCI_1,6FEK_1
175
4
6VVS_1,6FEK_1
140
5
Newick tree
[
8XCI_1:91.97,
[
6VVS_1:70,6FEK_1:70
]:21.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1482
}{\log_{20}
1482}-\frac{350}{\log_{20}350})=291.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XCI_1
6VVS_1
373
240.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]