Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8XCA_1)}(2) \setminus P_{f(5SLI_1)}(2)|=91\),
\(|P_{f(5SLI_1)}(2) \setminus P_{f(8XCA_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000111001100110000000011111101111100010010100100001010000011001100010110001001111110000100011100000101101000101000000110011001100011100101011000010110011110100100111100100110011000000111111010001111101100101001011110110010011100001100000100010011011010001110011101001000100011111010111001001001101100010011100100111101100010000111110100100011010111010100111011100111010110101110111000110101100000010101000000000011010011110001000111000101001000001101110111000010100010111101110111111100110000110011101001010001101111000100010010000101100101000100011100101011000011110110100100000011001001000000100010100000000000110100101111100100110010000100100000110100100010000010100100100111001000110111100100100000100000001101111111100100010001111101010000000010001100011100010100000100101010111011001100000100111011001001101000000101010011111010101010001111010000110001000000110000111100000000100100011111010110100
Pair
\(Z_2\)
Length of longest common subsequence
8XCA_1,5SLI_1
154
5
8XCA_1,5UBV_1
179
3
5SLI_1,5UBV_1
191
4
Newick tree
[
5UBV_1:97.18,
[
8XCA_1:77,5SLI_1:77
]:20.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1431
}{\log_{20}
1431}-\frac{523}{\log_{20}523})=230.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8XCA_1
5SLI_1
292
231.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]