Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WRV_1)}(2) \setminus P_{f(5QBW_1)}(2)|=4\),
\(|P_{f(5QBW_1)}(2) \setminus P_{f(8WRV_1)}(2)|=138\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01110010001101101111000000110111110101001011
Pair
\(Z_2\)
Length of longest common subsequence
8WRV_1,5QBW_1
142
3
8WRV_1,1ERF_1
28
4
5QBW_1,1ERF_1
144
3
Newick tree
[
5QBW_1:82.16,
[
8WRV_1:14,1ERF_1:14
]:68.16
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{267
}{\log_{20}
267}-\frac{44}{\log_{20}44})=73.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WRV_1
5QBW_1
100
57.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]