Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WQM_1)}(2) \setminus P_{f(2EQB_1)}(2)|=130\),
\(|P_{f(2EQB_1)}(2) \setminus P_{f(8WQM_1)}(2)|=34\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110001000010100100101101010011001011111010100010010110100110010101110110010101101010001011010010000110001111011110100100110101101111001111100110110101010111001000100000001111100100100111001100100111011011111001111011001101010011010011001111000011111100110100000010001000011110011110001100100100000111101110111000001000110110000100000111110000010110110011100101110110011011000010100011011110101001100100000010100111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{591
}{\log_{20}
591}-\frac{174}{\log_{20}174})=119.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WQM_1
2EQB_1
152
104.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]