Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WKI_1)}(2) \setminus P_{f(4OVX_1)}(2)|=93\),
\(|P_{f(4OVX_1)}(2) \setminus P_{f(8WKI_1)}(2)|=78\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010011011011100101110011001001100101011011110011111011110001001000001011011100011101100010110000101010000011010110101011010110100110111101100111100000101010100001110001101001000000101010000101001010110000001110000000111011001000101000111001101010010101101101010110010000110011100001001101100010001011100000000111011110110001110010011110010111111011010110100111010010100011011110000000100100000110011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{680
}{\log_{20}
680}-\frac{277}{\log_{20}277})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WKI_1
4OVX_1
140
118.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]