Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WGC_1)}(2) \setminus P_{f(5MUJ_1)}(2)|=133\),
\(|P_{f(5MUJ_1)}(2) \setminus P_{f(8WGC_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01110011010101111111110001111000111000011001011111100100010111110111011000000001100110110101001101000101010010010110110111110000101011011011011010010001010000000011001110110101110110110100100110010010011011010101001011000011011001110111011100101011111000001001111000101010111001111100111100111011101011001100110010010110000011100110001000100000110010111100000111110110111011001001101000010011011010010001110101011101100000101001101110001100101101000000110110110100011111010111111000001010001001011010011011001000010010010011101101010101011000101101111111011011111011111111000101110101001001111111100010111110100110010011110110100011100000110111110011001011011001110111101011111111110111010001100001101000000101110110011111100101100000100100101111010000111111111101000000100001010101010111101111010111101000110001100011011101000110101001110100100110000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1235
}{\log_{20}
1235}-\frac{381}{\log_{20}381})=222.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WGC_1
5MUJ_1
285
205.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]