Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8VWY_1)}(2) \setminus P_{f(2DYU_1)}(2)|=85\),
\(|P_{f(2DYU_1)}(2) \setminus P_{f(8VWY_1)}(2)|=101\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011000110111010001001110010000101001010000101010000100001011100100100001001100000110100000111110000011010011100111100010000001101111001010011001100110001000010000011100000010011011100001111001111100000101000100001001000100110001111100010000100100001100010110111001111101110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{607
}{\log_{20}
607}-\frac{273}{\log_{20}273})=93.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
8VWY_1
2DYU_1
121
109
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]