Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8VSZ_1)}(2) \setminus P_{f(7MIC_1)}(2)|=162\),
\(|P_{f(7MIC_1)}(2) \setminus P_{f(8VSZ_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001011110101100010101001010110000101111001011000110101110110111010110100100001000101010001100011101000101010110111110001100000110010110011011001011011010001100101000110000001010011001001010110100010110010110001000101100000001000011101010001101110001100111110110111010011100011100110100111100001100001101101011101011111110011100001001110001000010010100110001001000101101010000100001010000010111000110110010100100100000111111111101101100101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{594
}{\log_{20}
594}-\frac{154}{\log_{20}154})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8VSZ_1
7MIC_1
162
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]